Time Series Properties of an Artificial Stock Market

نویسندگان

  • Blake LeBaron
  • W. Brian Arthur
  • Richard Palmer
چکیده

This paper presents results from an experimental computer simulated stock market. In this market artificial intelligence algorithms take on the role of traders. They make predictions about the future, and buy and sell stock as indicated by their expectations of future risk and return. Prices are set endogenously to clear the market. Time series from this market are analyzed from the standpoint of well known empirical features in real markets. The simulated market is able to replicate several of these phenomenon, including fundamental and technical predictability, volatility persistence, and leptokurtosis. Moreover, agent behavior is shown to be consistent with these features, in that they condition on the variables that are found to be significant in the time series tests. Agents are also able to collectively learn a homogeneous rational expectations equilibrium for certain parameters giving both time series and individual forecast values consistent with the equilibrium parameter values. JEL Classification: G12, G14, D83

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models

Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...

متن کامل

Forecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market

Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...

متن کامل

Machine learning algorithms for time series in financial markets

This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...

متن کامل

Long Memory in Stock Returns: A Study of Emerging Markets

The present study aimed at investigating the existence of long memory properties in ten emerging stock markets across the globe. When return series exhibit long memory, it indicates that observed returns are not independent over time. If returns are not independent, past returns can help predict future returns, thereby violating the market efficiency hypothesis. It poses a serious challenge to ...

متن کامل

Estimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models

A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998